شبیه سازی خودهمبسته جریان حوضه آبریز زرینه رود با استفاده از روش تجزیه پروکراستس و مدل‌های شبکه عصبی مصنوعی و ماشین بردار پشتیبان

Authors

Abstract:

پیش­بینی جریان رودخانه­ها در حوضه­های آبریز نقش مهمی در بهره­برداری و مدیریت صحیح منابع آبی دارد. تعیین نوع و تعداد ورودی­ مدل­های تخمین­گر، یکی از مهم­ترین مراحل در پیش­بینی جریان رودخانه­ها می­باشد. بنابراین از روش تجزیه پروکراستس (PA) برای تعیین تعداد ورودی­های موثر استفاده شده است. در این تحقیق پیش­بینی جریان با استفاده از داده­های جریان ماهانه ایستگاه­های آب­سنجی صفاخانه و سنته انجام گرفته است. مدل شبکه عصبی مصنوعی (MLP) و مدل ماشین بردار پشتیبان (SVM) برای پیش­بینی جریان مورد استفاده قرار گرفته­اند. بهترین تخمین جریان با استفاده از مدل­های MLP و PA-MLP در ایستگاه آب­سنجی صفاخانه به­ترتیب با RMSE برابر با (m3/s) 68/5 و (m3/s) 85/4 و CC برابر با 73/0 و 78/0 و در ایستگاه آب­سنجی سنته به­ترتیب با RMSE برابر با (m3/s) 44/6 و (m3/s) 36/6 و CC برابر با 78/0 و 79/0 انجام شده است. مدل­ PA-SVM نیز به­ترتیب با RMSE و CC برابر با (m3/s) 45/5 و 73/0 در دوره صحت­سنجی نتایج بهتری را نسبت مدل SVM در تخمین جریان ایستگاه آب­سنجی صفاخانه داشته است. همچنین نتایج نشان داد که مدل‏های SVM و PA-SVM جریان ایستگاه سنته را با RMSE به­ترتیب برابر با (m3/s) 85/6 و (m3/s) 03/7 تخمین زده‏اند. در حالت کلی نتایج نشان داد که روش تجزیه پروکراستس می­تواند به­عنوان یکی از روش‌های کارآمد و مناسب جهت تعیین تعداد ورودی موثر مورد استفاده قرار گیرد. مقایسه نتایج مدل­های MLP و SVM نیز نشان داد که مدل MLP از دقت بیشتری نسبت به مدل SVM برخوردار است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی

Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of  this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...

full text

مدل‌سازی مقاومت فشاری بتن غلتکی با استفاده از شبکه عصبی مصنوعی، انفیس و ماشین بردار پشتیبان

امروزه از بتن غلتکی در ساخت سد‌ها و روسازی راه‌ها استفاده می‌شود و طی سال‌های اخیر استفاده از این نوع بتن به علت مزایایی چون کوتاه شدن زمان ساخت، در دسترس بودن مصالح مورد نیاز، عملکرد مناسب در نواحی سرد و عمر مفید طولانی گسترش یافته است. مهم‌ترین خاصیت مکانیکی بتن غلتکی، مقاومت فشاری می‌باشد که افزایش آن می‌تواند عملکرد این نوع بتن را بهبود بخشد. حساسیت بتن غلتکی به اجزای تشکیل‌دهنده آن سبب مشک...

full text

شبیه سازی نوسانات سطح آب زیرزمینی با استفاده از ترکیب ماشین بردار پشتیبان و تبدیل موجک

امروزه در بسیاری از کشورهای جهان، به ویژه در مناطقی که با کمبود آب‌های سطحی مواجه هستند، بهره­برداری از منابع آب زیرزمینی بیش از پیش مورد توجه قرار گرفته است. بهره­برداری بی­رویه از این منابع، بدون بهره­گیری از مطالعات منابع آب زیرزمینی می­تواند مشکلات و پیامدهای جبران‌ناپذیری را به­بار آورد. مدیریت صحیح این منابع با شناخت کامل و آگاهی از این منابع امکان­پذیر است. در این تحقیق از مدل ماشین بردا...

full text

مقایسه عملکرد ماشین بردار پشتیبان و شبکه عصبی مصنوعی در برآورد ارتفاع آب معادل برف در حوضه آذربایجان شرقی

برف و برفاب در حوضه­های کوهستانی و مرتفع عامل مهم و کنترل­کننده رژیم جریان محسوب شده و به عنوان منبع اصلی تأمین آب نقش بسیار مهمی را ایفا می­نماید. به همین دلیل در مناطق کوهستانی هیدرولوژی برف اهمیت و ارزش زیادی دارد. علاوه بر این تخمین، شبیه­سازی و پیش­بینی جریان ناشی از ذوب برف و باران در زمینه­های مختلف دارای اهمیت و کاربرد می‌باشد که از جمله آن تأمین آب شرب، کشاورزی، صنعت و تفرجگاه­ها، تنظی...

full text

شناسایی گردوغبار در تصاویر ماهواره‌ای MODIS با استفاده از روشهای ماشین بردار پشتیبان، شبکه عصبی مصنوعی و درخت تصمیمگیری

یکی از مهمترین بلایای طبیعی که طی سالیان اخیر موردتوجه قرارگرفته، پدیده‌ی گردوغبار است. در سال‌های اخیر این پدیده در ایران ابعاد تازه‌ای گرفته و از یک معضل محلی، به مسئله‌ای ملی تبدیل شده است. شناسایی و تشخیص طوفان گردوغبار اولین مرحله در بررسی و پایش آن می‌باشد. این تحقیق باهدف شناسایی مناطق دارای گردوغبار از تصاویر ماهواره‌ای، در منطقه خاورمیانه انجام گرفته است. در بررسی پدیده گردوغبار تصاویر...

full text

تهیه نقشه کاربری اراضی دشت عباس ایلام با استفاده از روش‌های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و حداکثر احتمال

یکی از ضروری‌ترین اطلاعات مورد نیاز مدیران و متولیان منابع طبیعی، نقشه‌های کاربری اراضی می‌باشد. در پژوهش حاضر، به‌منظور تهیة نقشة کاربری اراضی دشت عباس از داده‌های رقومی سنجنده (1386)ETM+ استفاده شد. ابتدا تصویر با میانگین خطای مربعات 47/0 پیکسل تصحیح هندسی شد. جهت طبقه­بندی تصویر از روش‌های طبقه­بندی شبکه عصبی مصنوعی، ماشین بردار پشتیبان و حداکثر احتمال استفاده شد. در نهایت، نقشة پوشش اراضی م...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 4

pages  119- 134

publication date 2017-05-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023